Frequency Shift Keying - определение. Что такое Frequency Shift Keying
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Frequency Shift Keying - определение

MODULATION SCHEME FOR TRANSMISSIONS
Frequency shift keying; AFSK; Audio frequency-shift keying; Mark frequency; Mark tone; Space tone; Space frequency; Frequency Shift Keying; Audio frequency shift keying; Gaussian frequency-shift keying; Audio fsk; FSK standards for use in Caller ID and remote metering; Fsk standards for use in caller id and remote metering; GFSK; BFSK; GFSK modulation
  • thumb
Найдено результатов: 976
Frequency-shift keying         
Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is transmitted through discrete frequency changes of a carrier signal., p 509 The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands.
Frequency Shift Keying         
<communications> (FSK) The use of frequency modulation to transmit digital data, i.e. two different carrier frequencies are used to represent zero and one. FSK was originally used to transmit teleprinter messages by radio (RTTY) but can be used for most other types of radio and land-line digital telegraphy. More than two frequencies can be used to increase transmission rates. (1997-07-14)
Multiple frequency-shift keying         
MFSK; Multi-frequency shift keying; Mfsk16; MFSK8; MFSK16; Mfsk4; Mfsk32; Mfsk64
Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms.
GFSK         
Gaussian Frequency Shift Keying (Reference: telecommunication)
Amplitude and phase-shift keying         
16APSK; Asymmetric phase-shift keying; APSK
Amplitude and phase-shift keying (APSK) is a digital modulation scheme that conveys data by modulating both the amplitude and the phase of a carrier wave. In other words, it combines both amplitude-shift keying (ASK) and phase-shift keying (PSK).
BPSK         
  • Constellation diagram for 8-PSK with Gray coding
  • [[Constellation diagram]] example for BPSK
  • Timing diagram for DBPSK and DQPSK. The binary data stream is above the DBPSK signal. The individual bits of the DBPSK signal are grouped into pairs for the DQPSK signal, which only changes every ''T<sub>s</sub>'' = 2''T<sub>b</sub>''.
  • BER comparison between DBPSK, DQPSK and their non-differential forms using Gray coding and operating in white noise
  • BER comparison between BPSK and differentially encoded BPSK operating in white noise
  • Differential encoding/decoding system diagram
  • Timing diagram for offset-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note the half-period offset between the two signal components.
  • Difference of the phase between QPSK and OQPSK
  • Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, additive white Gaussian noise channel
  • Mutual information of PSK over the AWGN channel
  • Dual constellation diagram for π/4-QPSK. This shows the two separate constellations with identical Gray coding but rotated by 45° with respect to each other.
  • Timing diagram for π/4-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note that successive symbols are taken alternately from the two constellations, starting with the "blue" one.
  • Signal doesn't pass through the origin, because only one bit of the symbol is changed at a time.
  • Constellation diagram for QPSK with [[Gray coding]]. Each adjacent symbol only differs by one bit.
  • Timing diagram for QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown at the top, and the total combined signal at the bottom. Note the abrupt changes in phase at some of the bit-period boundaries.
  • Receiver structure for QPSK. The matched filters can be replaced with correlators. Each detection device uses a reference threshold value to determine whether a 1 or 0 is detected.
  • Conceptual transmitter structure for QPSK. The binary data stream is split into the in-phase and quadrature-phase components. These are then separately modulated onto two orthogonal basis functions. In this implementation, two sinusoids are used. Afterwards, the two signals are superimposed, and the resulting signal is the QPSK signal. Note the use of polar [[non-return-to-zero]] encoding. These encoders can be placed before for binary data source, but have been placed after to illustrate the conceptual difference between digital and analog signals involved with digital modulation.
TYPE OF DATA ENCODING
Coherent differential phase-shift keying; Filtered symmetric differential phase-shift keying; Quadrature phase-shift keying; Phase shift keying; QPSK; OQPSK; Phase Shift Keying; Differential Phase Shift Keying; BPSK; Binary Phase Shift Keying; CDPSK; Biphase Shift Keying; Quadriphase; Quaternary phase-shift keying; 8-PSK; Quaternary phase shift keying; DPSK; Differential phase shift keying; DQPSK; Biphase modulation; Offset quadrature phase-shift keying; Offset QPSK; Staggered phase shift keying; Binary pase shift keying; 4PSK; 4-PSK; Staggered quadrature phase-shift keying; SQPSK; Phase Shift Modulation; 8 Phase Shift Keying; 8 phase shift keying; Differential phase-shift keying; Gaussian Phase Shift Keying; GPSK; DBPSK; Mpsk; 16psk; 32psk; 64psk; 128psk; 256psk; 512psk; 1024psk; 2psk; Offset psk; Opsk; HPSK; M PSK; Binary phase-shift keying; Quadrature Phase Shift Keying; 8PSK; SDPSK; Quatenary phase shift keying
Bi-Phase Shift Keying [Additional explanations: modulation] (Reference: HiperLAN/2, , 802.11a)
GMSK         
  • Power spectral densities of MSK and GMSK. Note that the decreasing of time-bandwidth <math>BT</math> negatively influences bit-error-rate performance due to increasing [[intersymbol interference]].<ref>Haykin, S., 2001. Communication Systems, John Wiley&Sons. Inc. - p. 398</ref>
  • continuous phase]].  Each bit time, the carrier phase changes by ±90°.
TYPE OF CONTINUOUS-PHASE FREQUENCY-SHIFT KEYING
Gaussian minimum-shift keying; Gaussian Minimum Shift Keying; GMSK; Gaussian minimum shift keying; Minimum shift keying; Gaussian MSK
Gaussian Minimum Shift Keying
Minimum-shift keying         
  • Power spectral densities of MSK and GMSK. Note that the decreasing of time-bandwidth <math>BT</math> negatively influences bit-error-rate performance due to increasing [[intersymbol interference]].<ref>Haykin, S., 2001. Communication Systems, John Wiley&Sons. Inc. - p. 398</ref>
  • continuous phase]].  Each bit time, the carrier phase changes by ±90°.
TYPE OF CONTINUOUS-PHASE FREQUENCY-SHIFT KEYING
Gaussian minimum-shift keying; Gaussian Minimum Shift Keying; GMSK; Gaussian minimum shift keying; Minimum shift keying; Gaussian MSK
In digital modulation, minimum-shift keying (MSK) is a type of continuous-phase frequency-shift keying that was developed in the late 1950s by Collins Radio employees Melvin L. Doelz and Earl T.
Phase-shift keying         
  • Constellation diagram for 8-PSK with Gray coding
  • [[Constellation diagram]] example for BPSK
  • Timing diagram for DBPSK and DQPSK. The binary data stream is above the DBPSK signal. The individual bits of the DBPSK signal are grouped into pairs for the DQPSK signal, which only changes every ''T<sub>s</sub>'' = 2''T<sub>b</sub>''.
  • BER comparison between DBPSK, DQPSK and their non-differential forms using Gray coding and operating in white noise
  • BER comparison between BPSK and differentially encoded BPSK operating in white noise
  • Differential encoding/decoding system diagram
  • Timing diagram for offset-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note the half-period offset between the two signal components.
  • Difference of the phase between QPSK and OQPSK
  • Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, additive white Gaussian noise channel
  • Mutual information of PSK over the AWGN channel
  • Dual constellation diagram for π/4-QPSK. This shows the two separate constellations with identical Gray coding but rotated by 45° with respect to each other.
  • Timing diagram for π/4-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note that successive symbols are taken alternately from the two constellations, starting with the "blue" one.
  • Signal doesn't pass through the origin, because only one bit of the symbol is changed at a time.
  • Constellation diagram for QPSK with [[Gray coding]]. Each adjacent symbol only differs by one bit.
  • Timing diagram for QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown at the top, and the total combined signal at the bottom. Note the abrupt changes in phase at some of the bit-period boundaries.
  • Receiver structure for QPSK. The matched filters can be replaced with correlators. Each detection device uses a reference threshold value to determine whether a 1 or 0 is detected.
  • Conceptual transmitter structure for QPSK. The binary data stream is split into the in-phase and quadrature-phase components. These are then separately modulated onto two orthogonal basis functions. In this implementation, two sinusoids are used. Afterwards, the two signals are superimposed, and the resulting signal is the QPSK signal. Note the use of polar [[non-return-to-zero]] encoding. These encoders can be placed before for binary data source, but have been placed after to illustrate the conceptual difference between digital and analog signals involved with digital modulation.
TYPE OF DATA ENCODING
Coherent differential phase-shift keying; Filtered symmetric differential phase-shift keying; Quadrature phase-shift keying; Phase shift keying; QPSK; OQPSK; Phase Shift Keying; Differential Phase Shift Keying; BPSK; Binary Phase Shift Keying; CDPSK; Biphase Shift Keying; Quadriphase; Quaternary phase-shift keying; 8-PSK; Quaternary phase shift keying; DPSK; Differential phase shift keying; DQPSK; Biphase modulation; Offset quadrature phase-shift keying; Offset QPSK; Staggered phase shift keying; Binary pase shift keying; 4PSK; 4-PSK; Staggered quadrature phase-shift keying; SQPSK; Phase Shift Modulation; 8 Phase Shift Keying; 8 phase shift keying; Differential phase-shift keying; Gaussian Phase Shift Keying; GPSK; DBPSK; Mpsk; 16psk; 32psk; 64psk; 128psk; 256psk; 512psk; 1024psk; 2psk; Offset psk; Opsk; HPSK; M PSK; Binary phase-shift keying; Quadrature Phase Shift Keying; 8PSK; SDPSK; Quatenary phase shift keying
Phase-shift keying (PSK) is a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency reference signal (the carrier wave). The modulation is accomplished by varying the sine and cosine inputs at a precise time.
8PSK         
  • Constellation diagram for 8-PSK with Gray coding
  • [[Constellation diagram]] example for BPSK
  • Timing diagram for DBPSK and DQPSK. The binary data stream is above the DBPSK signal. The individual bits of the DBPSK signal are grouped into pairs for the DQPSK signal, which only changes every ''T<sub>s</sub>'' = 2''T<sub>b</sub>''.
  • BER comparison between DBPSK, DQPSK and their non-differential forms using Gray coding and operating in white noise
  • BER comparison between BPSK and differentially encoded BPSK operating in white noise
  • Differential encoding/decoding system diagram
  • Timing diagram for offset-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note the half-period offset between the two signal components.
  • Difference of the phase between QPSK and OQPSK
  • Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, additive white Gaussian noise channel
  • Mutual information of PSK over the AWGN channel
  • Dual constellation diagram for π/4-QPSK. This shows the two separate constellations with identical Gray coding but rotated by 45° with respect to each other.
  • Timing diagram for π/4-QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown the top and the total, combined signal at the bottom. Note that successive symbols are taken alternately from the two constellations, starting with the "blue" one.
  • Signal doesn't pass through the origin, because only one bit of the symbol is changed at a time.
  • Constellation diagram for QPSK with [[Gray coding]]. Each adjacent symbol only differs by one bit.
  • Timing diagram for QPSK. The binary data stream is shown beneath the time axis. The two signal components with their bit assignments are shown at the top, and the total combined signal at the bottom. Note the abrupt changes in phase at some of the bit-period boundaries.
  • Receiver structure for QPSK. The matched filters can be replaced with correlators. Each detection device uses a reference threshold value to determine whether a 1 or 0 is detected.
  • Conceptual transmitter structure for QPSK. The binary data stream is split into the in-phase and quadrature-phase components. These are then separately modulated onto two orthogonal basis functions. In this implementation, two sinusoids are used. Afterwards, the two signals are superimposed, and the resulting signal is the QPSK signal. Note the use of polar [[non-return-to-zero]] encoding. These encoders can be placed before for binary data source, but have been placed after to illustrate the conceptual difference between digital and analog signals involved with digital modulation.
TYPE OF DATA ENCODING
Coherent differential phase-shift keying; Filtered symmetric differential phase-shift keying; Quadrature phase-shift keying; Phase shift keying; QPSK; OQPSK; Phase Shift Keying; Differential Phase Shift Keying; BPSK; Binary Phase Shift Keying; CDPSK; Biphase Shift Keying; Quadriphase; Quaternary phase-shift keying; 8-PSK; Quaternary phase shift keying; DPSK; Differential phase shift keying; DQPSK; Biphase modulation; Offset quadrature phase-shift keying; Offset QPSK; Staggered phase shift keying; Binary pase shift keying; 4PSK; 4-PSK; Staggered quadrature phase-shift keying; SQPSK; Phase Shift Modulation; 8 Phase Shift Keying; 8 phase shift keying; Differential phase-shift keying; Gaussian Phase Shift Keying; GPSK; DBPSK; Mpsk; 16psk; 32psk; 64psk; 128psk; 256psk; 512psk; 1024psk; 2psk; Offset psk; Opsk; HPSK; M PSK; Binary phase-shift keying; Quadrature Phase Shift Keying; 8PSK; SDPSK; Quatenary phase shift keying
8 Phase Shift Keying (Reference: EDGE, mobile-systems)

Википедия

Frequency-shift keying

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK), in which the carrier is shifted between two discrete frequencies to transmit binary (0s and 1s) information.